
2024 Championships The word “compute” calls for an exact answer in simplest form.

T1. A jar has only red and blue jellybeans. The probability of drawing a red jellybean is 4
11 .

After two red jellybeans and half of the blue jellybeans are removed from the jar, the probability
of drawing a red jellybean is 1

2 . Compute the number of jellybeans originally in the jar.

T2. Compute the positive integer n such that (n− 15)3(n2 − 36) = 2024.

T3. Square ABCD has sides AB and BC tangent to a circle centered at O with radius 6. The
point D is on the circle centered at O.

O
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Compute the area of ABCD.

T4. Suppose that points P and Q lie on sides AB and CD of square ABCD, respectively, so that
AP : PB = DQ : QC = 1 : 3. Given that a point X is chosen uniformly at random within the
square, compute the probability that ∠PXQ is obtuse.

T5. Consider the following grid of squares, 8 of which are blank.

Compute the number of ways there are to place the numbers from 1 to 8 in the blank squares in
the grid so that no two adjacent numbers share a common integer factor greater than 1.



T6. The measure of an exterior angle of a regular polygon is (2x+ 6)◦ for some integer x. The
measure of an interior angle of the same regular polygon is (ax+ b)◦ where a and b are positive
integers whose sum is 29. Compute the number of diagonals of the regular polygon.

T7. Let r1, r2, and r3 be the three distinct complex roots of x3 + 9x2 + 20x+ 24. Given that ra,
rb, and rc are chosen uniformly at random from the set {r1, r2, r3} (with replacement), compute
the mean of all 27 possible (not necessarily distinct) values of ra · rb + rc.

T8. The 17-digit number 59396A5776B676732 is divisible by 308. Compute A2 ·B3.

T9. Compute the number of ordered triples of positive integers (a, b, c) such that
a+ b+ c+ gcd(a, b, c) = 18.

T10. A right circular cylinder has a height of 10 and its base has redius 1. A triangle with its
three vertices on the lateral surface of the cylinder has area 2. None of these vertices is on either
of the bases of the cylinder. This triangle is inscribed in an ellipse of area rπ that has its entire
boundary on the surface of the cylinder and whose minor axis is a diameter of a horizontal
cross-section, as shown below, with the horizontal cross-section shaded.

Compute the least possible value of r2.



2024 Championships The word “compute” calls for an exact answer in simplest form.

T1. A jar has only red and blue jellybeans. The probability of drawing a red jellybean is 4
11 .

After two red jellybeans and half of the blue jellybeans are removed from the jar, the probability
of drawing a red jellybean is 1

2 . Compute the number of jellybeans originally in the jar.

T1-Sol. 44 Suppose the jar originally contained 4k red jellybeans, which means it contained
11k − 4k = 7k blue jellybeans. After the jellybeans described in the problem statement are
removed, there are 4k − 2 red jellybeans and 7k

2 blue jellybeans. Because the probability of

drawing a red jellybean is 1
2 after the removal, it follows that 4k − 2 = 7k

2 . This implies
8k − 4 = 7k → k = 4. Thus there were originally 11 · 4 = 44 jellybeans in the jar.

T2. Compute the positive integer n such that (n− 15)3(n2 − 36) = 2024.

T2-Sol. 17 The given equation is equivalent to (n− 15)3(n− 6)(n+ 6) = 2024. Notice also that
23 · 11 · 23 = 2024. Because these factorings both equal 2024, the factors on the left-hand side of
the one equation must match up with the factors of the left-hand side of the other equation, or
else one of the factors on one of the left-hand sides is 1. It can be shown that the first case is
correct, and n = 17 works.

T3. Square ABCD has sides AB and BC tangent to a circle centered at O with radius 6. The
point D is on the circle centered at O.
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Compute the area of ABCD.



T3-Sol. 54 + 36
√
2 Draw the two radii to the two points of tangency labeled E and F on sides

AB and BC, respectively.
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By the equal tangents theorem, BE = BF . Because each radius is perpendicular to the tangent
line at the point of tangency, it follows that BEOF is a rectangle. Two pairs of adjacent sides are
congruent (BE = BF and OE = OF ), and so BEOF is a square with side length 6. Thus the
diagonal BD passes through point O and its length is BD = BO +OD = 6

√
2 + 6, so

[ABCD] = (6
√
2+6)2

2 = 54 + 36
√
2.

T4. Suppose that points P and Q lie on sides AB and CD of square ABCD, respectively, so that
AP : PB = DQ : QC = 1 : 3. Given that a point X is chosen uniformly at random within the
square, compute the probability that ∠PXQ is obtuse.

T4-Sol. π
6 +

√
3

16 or 8π+3
√
3

48 Without loss of generality, suppose that the side length of the square

is 4. Consider the circle with diameter PQ and center O. The points X for which ∠PXQ is
obtuse are inside this circle.
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Draw the intersections the circle has with AD. Notice that the distance from the center of the
circle, O, to AD is 1, while the radius of the circle is 2. Thus the central angle passing through
these two intersection points measures 120◦. Split the desired area into a 240◦ sector and a
triangle to find that its area is

2

3
· 22 · π +

1

2
· 1 · 2

√
3 =

8π

3
+
√
3.



Because the area of the square is 16, it follows that the final answer is 8π/3+
√
3

16 =8π+3
√

3
48

.

T5. Consider the following grid of squares, 8 of which are blank.

Compute the number of ways there are to place the numbers from 1 to 8 in the blank squares in
the grid so that no two adjacent numbers share a common integer factor greater than 1.

T5-Sol. 576 Any two even integers share a common factor of 2, so no two even integers can be
adjacent. This means that the four even integers must occupy either all the edges or all the
corners. Equivalently, all four odd integers must occupy either all the corners or all the edges.
First, place the odd integers into the grid so that none are adjacent. There are 2 ways to choose
whether to put them all on corners or on edges, and there are 4! ways to arrange them after
making this choice. Now note that any odd integer other than 3 can neighbor any even integer, so
there are no restrictions on the neighbors of 1, 5, or 7. However, 3 is not allowed to be next to 6.
This means that, no matter how the odd integers are placed, there are only two places that the 6
can be placed. After choosing the position of 6, there are 3! ways to place the remaining numbers
2, 4, and 8.
In conclusion, the number of ways to place these numbers under the given restriction is

2 · 4! · 2 · 3! = 4! · 2 · 2 · 3! = 24 · 24 = 576.

T6. The measure of an exterior angle of a regular polygon is (2x+ 6)◦ for some integer x. The
measure of an interior angle of the same regular polygon is (ax+ b)◦ where a and b are positive
integers whose sum is 29. Compute the number of diagonals of the regular polygon.

T6-Sol. 54 In a polygon, because an interior angle and its corresponding exterior angle are
supplementary, it follows that 2x+ 6 + ax+ b = 180 → (2 + a)x = 174− b → x = 174−b

2+a . Because

a+ b = 29, it follows that x = 145+a
2+a = 1 + 143

2+a .
Thus 2 + a is a factor of 143 = 11 · 13, and so a = 9 or a = 11.
Consider first the case that n = 9. This implies b = 20, which implies x = 154

11 = 14. Thus the
exterior angle measures (2 ·14+6)◦ = 34◦, but this is not a factor of 360, so this case is impossible.
Now consider the case that n = 11. This implies b = 18, which implies x = 156

13 = 12. Thus the
exterior angle measures (2 · 12 + 6)◦ = 30◦, and the number of sides is 360÷ 30 = 12. The number
of diagonals is 12·9

2 = 54.



T7. Let r1, r2, and r3 be the three distinct complex roots of x3 + 9x2 + 20x+ 24. Given that ra,
rb, and rc are chosen uniformly at random from the set {r1, r2, r3} (with replacement), compute
the mean of all 27 possible (not necessarily distinct) values of ra · rb + rc.

T7-Sol. 6 Because there are 3 choices for each root, the plan is to find the sum of all rarb + rc
and divide that sum by 27. Label the roots r1, r2, and r3. For a given rc, there are 3 · 3 = 9
not-necessarily-distinct values for rarb, so the sum of all rc is 9(r1 + r2 + r3). If ra = rb, then there
are 3 values for rc, so the sum of all rarb such that ra = rb is 3(r

2
1 + r22 + r23). If ra ̸= rb, then there

are still 3 values for rc but there are 2 ways for the value of rarb to be achieved because of the
commutative property of multiplication. The sum of all of these is 6(r1r2 + r2r3 + r3r1). Thus the
average is

3(r21 + r22 + r23) + 6(r1r2 + r2r3 + r3r1) + 9(r1 + r2 + r3)

27
,

which equals

3((r1 + r2 + r3)
2 − 2(r1r2 + r2r3 + r3r1)) + 6(r1r2 + r2r3 + r3r1) + 9(r1 + r2 + r3)

27
,

which equals
(r1 + r2 + r3)(r1 + r2 + r3 + 3)

9
.

This can be evaluated using Vieta’s formulas. Specifically, notice that r1 + r2 + r3 = −9, so the
average is (−9)(−9+3)

9 = 6.

Alternate Solution: If ra, rb, and rc are treated as independent identically distributed random
variables, then properties of expectation (linearity and independence) and Vieta’s formulas
drastically simplify the problem:
E[rarb + rc] = E[ra]E[rb] + E[rc] =

(
r1+r2+r3

3

)2
+ r1+r2+r3

3 = 9 + (−3) = 6.

T8. The 17-digit number 59396A5776B676732 is divisible by 308. Compute A2 ·B3.

T8-Sol. 125 Note that 308 = 22 · 7 · 11 and that 1001 = 7 · 11 · 13, so subtract convenient
multiples of 1001 to make computations easier.
Notice that 59396A5776B676732− 59359300000732732 = 37A− 35776B − 194400. Subtract
another 37A− 337A− 30000000 to obtain 2010−A6B − 1944000. Subtract another 20020000000
to obtain 10−A4B − 1944000. This implies that 10−A = 9 → A = 1 and B − 1 = 4 → B = 5.
The answer is A2 ·B3 = 125.

T9. Compute the number of ordered triples of positive integers (a, b, c) such that
a+ b+ c+ gcd(a, b, c) = 18.

T9-Sol. 144 Let d = gcd(a, b, c). There exist integers a′, b′, and c′ such that a = d · a′, b = d · b′,



and c = d · c′ with gcd(a′, b′, c′) = 1. Thus it follows that a′ + b′ + c′ = 18
d − 1.

Because a′, b′, and c′ are positive integers, it follows that d divides 18 and a′ + b′ + c′ is at least 3.
There are 6 divisors of 18 but d ̸= 18, d ̸= 9, and d ̸= 6 because a′ + b′ + c′ ≥ 3. Consider the
remaining cases.
Case 1: Suppose d = 3. Then a′ + b′ + c′ = 5. The only possible solutions for (a′, b′, c′) are (1, 1, 3),
(1, 2, 2), and each of their 3 different permutations. There are thus 6 different triples for d = 3.
Case 2: Suppose d = 2. Then a′ + b′ + c′ = 8. Using “sticks and stones”, the total number of
potential solutions to this equation is

(
7
2

)
= 21. This includes solutions where gcd(a′, b′, c′) = 2 so

these must be removed. The only solution where gcd(a′, b′, c′) = 2 is (2, 2, 4) and its 3
permutations. It is not possible for gcd(a′, b′, c′) to be greater than 2 because that would imply
that a′ + b′ + c′ > 8 which would be a contradiction. Thus there are 21− 3 = 18 triples for d = 2.
Case 3: Suppose d = 1. Then a′ + b′ + c′ = 17. Using “sticks and stones”, the total number of
potential solutions to this equation is

(
16
2

)
= 120. Because 17 is prime, it follows that

gcd(a′, b′, c′) = 1 for all solutions, so there are 120 triples for d = 1.
The total number of ordered triples (a, b, c) is 6 + 18 + 120 = 144.

T10. A right circular cylinder has a height of 10 and its base has redius 1. A triangle with its
three vertices on the lateral surface of the cylinder has area 2. None of these vertices is on either
of the bases of the cylinder. This triangle is inscribed in an ellipse of area rπ that has its entire
boundary on the surface of the cylinder and whose minor axis is a diameter of a horizontal
cross-section, as shown below, with the horizontal cross-section shaded.

Compute the least possible value of r2.

T10-Sol. 64
27 or 210

27 The smallest possible ellipse that lies on the lateral surface area of the

cylinder is a horizontal cross-section, being a circle with radius 1. The triangle with the greatest
area that can be inscribed in this circle has circumradius 1, and therefore side length

√
3 and area

3
√
3/4. This area is strictly less than 2, so the ellipse is not large enough to contain the triangle

in question.
Let E be an ellipse of minimal area circumscribing a triangle of area 2. Its semiminor axis has
been given to be 1. Let the semimajor axis be d: then the area of E is d · 1π = dπ. The ellipse E is
a dilation of a circle of radius 1 by a factor of d, so the area of any triangle inscribed in E is d
times the area of a triangle inscribed in a circle of radius 1. Therefore the greatest possible area of

a triangle inscribed in E is d · 3
√
3

4 . The minimum possible d for which this could equal 2 is

d =
2

(3
√
3/4)

=
8

3
√
3
.



This must be the semimajor axis of E . The area of E is therefore 8
3
√
3
π, so the minimal value of r

is 8
3
√
3
and that of r2 is 64

27
.



2024 Championships Divisibility Criteria

Remember that no calculators are allowed on this contest.

To receive full credit, the presentation must be legible, orderly, clear, and concise. When a numerical answer or formula is

called for, circle or box it. Even if not completed, earlier numbered items may be used to solve later numbered items, but not

vice-versa. The pages submitted should be numbered in consecutive order at the top of each page.

Put your Team Number (not your Team Name) on the cover sheet used as the first page of the papers submitted. Do not

identify your team in any other way.

BACKGROUND This Power Question concerns itself with divisibility criteria. A divisibility
criterion is a test for the divisibility of a number n by a number p using the digits of n without
actually performing the division of n by p. Some of these criteria may be familiar to many of our
contest-takers from elementary or middle school. The goal of this Power Question is to establish
some old familiar results and then move toward Zbikowski’s Criterion, which is far more general
than divisibility criteria that may be familiar.

P1. Some divisibility rules use just a digit or two of the number n. State and justify criteria for
determining (using only a digit or two) whether a positive integer n is divisible by:
a) 5;
b) 4. 4 points

P2. Some divisibility rules use all of the digits of the number n. State and justify criteria for
determining (using all of the digits) whether a positive integer n is divisible by:
a) 9;
b) 11. 6 points

P3. It is said that, for integers x and y, x divides y if y = n · x for some integer n.
a) Show that for all positive integers a, b, k, and m, if p divides a and p divides b, then p divides
k · a+m · b.
b) Show that for all positive integers a, b, k, and m and for all primes p, if p divides a but p
divides neither m nor b, then p does not divide k · a+m · b. 5 points

P4. A common divisibility rule for 7 may be somewhat familiar, and it is similar to a rule for
divisibility by 17.
a) Show that if n = 10a+ b for nonnegative integers a and b, n is divisible by 7 if and only if
a− 2b is divisible by 7. You may find it helpful to write 10a+ b as 10(a− 2b) + 21b.
b) Show that if n = 10a+ b for nonnegative integers a and b, n is divisible by 17 if and only if
a− 5b is divisible by 17. 5 points



P5. This question involves finding criteria for divisibility that are similar to the ones in P-4.
a) Find an integer k1 with |k1| < 19 such that the following statement is true: If n = 10a+ b for
nonnegative integers a and b, then n is divisible by 19 if and only if a− k1b is divisible by 19.
b) Find an integer k2 with |k2| < 23 such that the following statement is true: If n = 10a+ b for
nonnegative integers a and b, then n is divisible by 23 if and only if a− k2b is divisible by 23.
5 points

P6. The remainder of this Power Question will focus on Zbikowski’s Criterion for divisibility.
Zbikowski originally published his work in a journal in 1861, and the criterion appears to have
been previously unpublished.
There is a “subtraction style Zbikowski test” for a divisor p that operates as follows: Find a
multiple of p that ends in 1. Truncate (i.e., remove) the 1 from this multiple and let k denote the
integer that results. Then it follows that n = 10a+ b (for nonnegative integers a and b) is
divisible by p if and only if a− kb is divisible by p.
a) Show that for there to be a multiple of p that ends in 1, p must be relatively prime to 10 (that
is, p must end in 1, 3, 7, or 9).
b) Justify that the subtraction style Zbikowski test is valid. 6 points

P7. There is an “addition style Zbikowski test” for a divisor p that operates as follows: Find a
multiple of p that ends in 9. Truncate the 9 from this multiple and let k denote 1 more than the
integer that results. Then it follows that n = 10a+ b is divisible by p if and only if a+ kb is
divisible by p. Justify that the addition style Zbikowski test is valid. 4 points

P8. Find and justify divisibility criteria for the primes 53 and 2027 using the subtraction style
Zbikowski test or the addition style Zbikowski test. 6 points

P9. Suppose that p divides a positive integer of the form 10k − 1. Prove that if
n = am am−1 . . . a1 a0, then p divides n if and only if p divides
am + k(am−1 + k(am−2 + · · ·+ k(a1 + ka0) · · · )). 4 points

P10. What if n is written in base 8 (octal) or base 16 (hexadecimal)? What changes about
Zbikowski’s tests? What stays the same? 5 points



2024 Championships Divisibility Criteria

BACKGROUND This Power Question concerns itself with divisibility criteria. A divisibility
criterion is a test for the divisibility of a number n by a number p using the digits of n without
actually performing the division of n by p. Some of these criteria may be familiar to many of our
contest-takers from elementary or middle school. The goal of this Power Question is to establish
some old familiar results and then move toward Zbikowski’s Criterion, which is far more general
than divisibility criteria that may be familiar.

P1. Some divisibility rules use just a digit or two of the number n. State and justify criteria for
determining (using only a digit or two) whether a positive integer n is divisible by:
a) 5;
b) 4. 4 points

P1-Sol. a) A rule for divisibility by 5 is that n is divisible by 5 if and only if its ones digit is
divisible by 5 (that is, if the last digit is 0 or 5). Note that n = 10a+ b for some positive integers
a and b. Suppose that b is divisible by 5. Then b = 5c → n = 5(2a+ c), and because the integers
are closed under addition and multiplication, 2a+ c is an integer, so n is divisible by 5.
Conversely, if b is not a multiple of 5, then b = 5c+ d for digits c and d where 1 ≤ d ≤ 4. Thus
n = 5(2a+ c) + d, which is not a multiple of 5.

b) A rule for divisibility by 4 is that n is divisible by 4 if and only if the two-digit number formed
by its tens digit and ones digit is divisible by 4. Note that n = 100a+ b for some positive integers
a and b. Suppose that b is divisible by 4. Then b = 4c → n = 4(25a+ c), and because the integers
are closed under addition and multiplication, 25a+ c is an integer, so n is divisible by 4.
Conversely, if b is not a multiple of 4, then b = 4c+ d for whole numbers c and d where
d ∈ {1, 2, 3}. Thus n = 4(25a+ c) + d, which is not a multiple of 4.

P2. Some divisibility rules use all of the digits of the number n. State and justify criteria for
determining (using all of the digits) whether a positive integer n is divisible by:
a) 9;
b) 11. 6 points



P2-Sol. a) A rule for divisibility by 9 is that n is divisible by 9 if and only if the digit sum of n is
divisible by 9. Let n = nk . . . n4 n3 n2 n1. Then it follows that
n = (999 . . . 9)nk + · · ·+ 999n4 + 99n3 + 9n2) + (nk + · · ·+ n4 + n3 + n2 + n1). If the sum of the
digits is divisible by 9, then that digit sum equals 9 · c for some positive integer c, and
n = 9((111 . . . 1)nk + · · ·+ 111n4 + 11n3 + n2 + c), and because the integers are closed under
addition and multiplication, (111 . . . 1)nk + · · ·+ 111n4 + 11n3 + n2 + c is an integer, so n is
divisible by 9. Conversely, if the digit sum is not a multiple of 9, a similar argument will show
that n is not divisible by 9.

b) A rule for divisibility by 11 is that n is divisible by 11 if and only if the “alternating digit
sum” of n is divisible by 11. Let n = nk . . . n4 n3 n2 n1. Then it follows that
n = (10k−1 + (−1)k)nk + · · ·+ 1001n4 + 99n3 + 11n2) + ((−1)k−1nk + · · · − n4 + n3 − n2 + n1). If
the alternating sum of the digits is divisible by 11, then that digit sum equals 11 · c for some
positive integer c, and because every coefficient of the ni in
(10k−1 + (−1)k)nk + · · ·+ 1001n4 + 99n3 + 11n2 is a multiple of 11, and because the integers are
closed under addition and multiplication, it follows that n is divisible by 11. Conversely, if the
alternating digit sum is not a multiple of 11, a similar argument will show that n is not divisible
by 11.

P3. It is said that, for integers x and y, x divides y if y = n · x for some integer n.
a) Show that for all positive integers a, b, k, and m, if p divides a and p divides b, then p divides
k · a+m · b.
b) Show that for all positive integers a, b, k, and m and for all primes p, if p divides a but p
divides neither m nor b, then p does not divide k · a+m · b. 5 points

P3-Sol. a) There exist positive integers c and d such that a = p · c and b = p · d. Notice that
k · a+m · b = k · p · c+m · p · d = p(k · c+m · d). Because the integers are closed under addition
and multiplication, it follows that k · a+m · b is a multiple of p, as needed.
b) Assume for the sake of contradiction that p does divide k · a+m · b. This implies
k · a+m · b = n · p. Because p divides a, it follows that a = y · p for some integer y, and thus
m · b = n · p− ky · p = (n− ky) · p. Because the integers are closed under addition and
multiplication, this implies p divides mb, which implies p divides either m or b, and this is a
contradiction.

P4. A common divisibility rule for 7 may be somewhat familiar, and it is similar to a rule for
divisibility by 17.
a) Show that if n = 10a+ b for nonnegative integers a and b, n is divisible by 7 if and only if
a− 2b is divisible by 7. You may find it helpful to write 10a+ b as 10(a− 2b) + 21b.
b) Show that if n = 10a+ b for nonnegative integers a and b, n is divisible by 17 if and only if
a− 5b is divisible by 17. 5 points



P4-Sol. a) Note that 10a+ b = 10(a− 2b) + 21b. Suppose that a− 2b is a multiple of 7. Because
21b is also a multiple of 7, it follows by P-3 that n is a multiple of 7. Conversely, if a− 2b is not a
multiple of 7, then a− 2b = 7k + r for some whole numbers k and r where 1 ≤ r ≤ 6. Thus it
follows that n = 10 · 7k + 10 · r + 21b = 7(10k + 3b) + 10r, and because 10r is not a multiple of 7,
n is not a multiple of 7.

b) Note that 10a+ b = 10(a− 5b) + 51b. Suppose that a− 5b is a multiple of 17. Because 51b is
also a multiple of 17, it follows by P-3 that n is a multiple of 17. Conversely, if a− 5b is not a
multiple of 17, then a− 5b = 17k + r for some whole numbers k and r where 1 ≤ r ≤ 16. Thus it
follows that n = 10 · 17k + 10 · r + 51b = 17(10k + 3b) + 10r, and because 10r is not a multiple of
17, n is not a multiple of 17.

P5. This question involves finding criteria for divisibility that are similar to the ones in P-4.
a) Find an integer k1 with |k1| < 19 such that the following statement is true: If n = 10a+ b for
nonnegative integers a and b, then n is divisible by 19 if and only if a− k1b is divisible by 19.
b) Find an integer k2 with |k2| < 23 such that the following statement is true: If n = 10a+ b for
nonnegative integers a and b, then n is divisible by 23 if and only if a− k2b is divisible by 23.
5 points

P5-Sol. a) A rule for divisibility by 19 is that n = 10a+ b is divisible by 19 if and only if a+ 2b
is divisible by 19. This can be seen by writing n = 10a+ b = 10(a+ 2b)− 19b and applying an
argument similar to the argument made in the solution to P-4.

b) A rule for divisibility by 23 is that n = 10a+ b is divisible by 23 if and only if a+ 7b is
divisible by 23. This can be seen by writing n = 10a+ b = 10(a+ 7b)− 69b and applying an
argument similar to the argument made in the solution to P-4.

P6. The remainder of this Power Question will focus on Zbikowski’s Criterion for divisibility.
Zbikowski originally published his work in a journal in 1861, and the criterion appears to have
been previously unpublished.
There is a “subtraction style Zbikowski test” for a divisor p that operates as follows: Find a
multiple of p that ends in 1. Truncate (i.e., remove) the 1 from this multiple and let k denote the
integer that results. Then it follows that n = 10a+ b (for nonnegative integers a and b) is
divisible by p if and only if a− kb is divisible by p.
a) Show that for there to be a multiple of p that ends in 1, p must be relatively prime to 10 (that
is, p must end in 1, 3, 7, or 9).
b) Justify that the subtraction style Zbikowski test is valid. 6 points

P6-Sol. a) If p is even, no multiple of p can end in 1 because then that multiple would be odd.
Similarly, no multiple of 5 can end in 1 by the divisibility test for 5. Thus the units digit of p
must be 1, 3, 7, or 9.



b) Write n = 10a+ b = 10(a− kb) + (10k + 1)b. By construction, 10k + 1 is a multiple of p. Thus
it follows that if a− kb is a multiple of p, by P-3 n is a multiple of p. Similarly, if a− kb is not a
multiple of p, by an argument similar to the one in the solution to P-3 n is not a multiple of p.

P7. There is an “addition style Zbikowski test” for a divisor p that operates as follows: Find a
multiple of p that ends in 9. Truncate the 9 from this multiple and let k denote 1 more than the
integer that results. Then it follows that n = 10a+ b is divisible by p if and only if a+ kb is
divisible by p. Justify that the addition style Zbikowski test is valid. 4 points

P7-Sol. Write n = 10a+ b = 10(a+ kb)− (10k − 1)b. By construction, 10k − 1 is a multiple of p.
Thus it follows that if a+ kb is a multiple of p, by P-3 n is a multiple of p. Similarly, if a+ kb is
not a multiple of p, by an argument similar to the one in the solution to P-3 n is not a multiple
of p.

P8. Find and justify divisibility criteria for the primes 53 and 2027 using the subtraction style
Zbikowski test or the addition style Zbikowski test. 6 points

P8-Sol. For the prime 53, a divisibility criterion would be that n = 10a+ b is divisible by 53 if
and only if a+ 16b is divisible by 53. This is because of the addition style Zbikowski test from
P-7. Note that 159 is a multiple of 53, and 15 + 1 = 16 is the k from that test. (There are many
similar possible divisibility criteria.)
For the prime 2027, use the subtraction style Zbikowski test from P-6. A divisibility criterion
might be that n = 10a+ b is divisible by 2027 if and only if a− 608b is divisible by 2027. Note
that 6081 = 2027 · 3 is a multiple of 2027, and 608 is the k from that test. (There are many
similar possible divisibility criteria.)

P9. Suppose that p divides a positive integer of the form 10k − 1. Prove that if
n = am am−1 . . . a1 a0, then p divides n if and only if p divides
am + k(am−1 + k(am−2 + · · ·+ k(a1 + ka0) · · · )). 4 points

P9-Sol. Note that if p divides 10k − 1, then 10k ≡ 1 (mod p). Notice that
n = 10(10m−1am + · · ·+ 10a2 + a1) + a0, which is equivalent to
10(10m−1am + · · ·+ 10a2 + a1) + 10ka0 = 10(10m−1am + · · ·+ 10a2 + (a1 + ka0) (mod p). This
can be rewritten as n ≡ 102(10m−2am + · · ·+ 10a3 + a2) + 10 · 10k(a1 + ka0) (mod p). Continuing
in this way, it follows that n ≡ 10m(am + k(am−1 + k(am−2 + · · ·+ k(a1 + ka0) · · · )) (mod p).
Because p divides 10k − 1, it follows that neither 2 nor 5 is a factor of p, and so p does not divide



10m. Thus p divides n if and only if p divides am + k(am−1 + k(am−2 + · · ·+ k(a1 + ka0) · · · )).

P10. What if n is written in base 8 (octal) or base 16 (hexadecimal)? What changes about
Zbikowski’s tests? What stays the same? 5 points

P10-Sol. If n is written as an octal number, then the fundamental ideas remain the same
regarding how to construct divisibility criteria, but some differences appear. For example, when
constructing an addition style Zbikowski test, one would look for a multiple of p that ends in 7
(the greatest digit in base eight). When constructing a subtraction style Zbikowski test, one would
still look for a multiple of p that ends in 1 (the least positive digit). Similar ideas are present with
hexadecimal representations. What comparisons and contrasts has the reader drawn? Send them
to coachreu@gmail.com and we’ll try to compile several of them for our next NYSML book.

You can find more information about Zbikowski criteria at
maa. org/ press/ periodicals/ convergence/

divisibility-tests-a-history-and-users-guide-zbikowski-divisibility-tests . The
main idea for this Power Question came from an article by Yonah Cherniavsky and Artour
Mouftakhov (2014) Zbikowski’s Divisibility Criterion, The College Mathematics Journal, 45:1,
17-21, DOI: 10.4169/college.math.j.45.1.017. NYSML also suggests the article by Sandy Ganzell
(2017) Divisibility Tests, Old and New, The College Mathematics Journal, 48:1, 36-40, DOI:
10.4169/college.math.j.48.1.36.



2024 Championships The word “compute” calls for an exact answer in simplest form.

I1. Compute 13972 + 1391.

I2. When numbering the floors of a new high-rise building, the owner decides that any number
that is a multiple of 3 or a multiple of 5 or both will not be used. Because of this decision, the
first four floors are numbered 1, 2, 4, and 7. Given that the high-rise building has 80 floors,
compute the number that will be assigned to the top floor.

I3. Consider the following system of equations:

17 = a,

103 = 2a+ 3b,

525 = 4a+ 5b+ 6c,

616 = 7a+ 8b+ 9c+ 10d,

1224 = 11a+ 12b+ 13c+ 14d+ 15e.

This system has exactly one solution. For this solution, compute a+ b+ c+ d+ e.

I4. Given △AB1C with AB1 = 4, B1C = 3, and AC = 5. Starting at B1, a path is drawn by first
dropping a perpendicular B1B2 to AC, then dropping a perpendicular B2B3 to AB1, then
dropping a perpendicular B3B4 to AC, and so on ad infinitum, alternately dropping
perpendiculars to AC and AB1.

Compute the total length of the path B1B2B3 . . . .

I5. Compute the positive integer n such that (log2 108)
2 + (log2 162)

2 − 1 = (log2 n)
2.



I6. In the NYSMLottery, the winning combination is determined by picking a subset of 6
numbers from the set {1, 2, 3, . . . , N}. Given that there are 28,989,675 possible winning
combinations, compute N .

I7. In the equation x3 + bx+ c = 0, each of b and c is independently and uniformly randomly
chosen from the interval [−2024, 2024]. Compute the probability that all three solutions of this
cubic equation are negative real numbers.

I8. Compute the least positive integer n > 45 such that n2 − 1 is a multiple of 2024.

I9. Compute the sum of all positive three-digit multiples of 7 whose digit sum is also 7.

I10. In a square of side length 36, two squares are inscribed, with vertices at the trisection points
of the sides, as shown in the diagram.

Compute the area of the intersection of these two squares, which is shaded in the diagram.
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I7. In the equation x3 + bx+ c = 0, each of b and c is independently and uniformly randomly
chosen from the interval [−2024, 2024]. Compute the probability that all three solutions of this
cubic equation are negative real numbers.

I8. Compute the least positive integer n > 45 such that n2 − 1 is a multiple of 2024.
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I9. Compute the sum of all positive three-digit multiples of 7 whose digit sum is also 7.

I10. In a square of side length 36, two squares are inscribed, with vertices at the trisection points
of the sides, as shown in the diagram.

Compute the area of the intersection of these two squares, which is shaded in the diagram.
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2024 Championships The word “compute” calls for an exact answer in simplest form.

I1. Compute 13972 + 1391.

I1-Sol. 1953000 Let N = 1400. Then the desired quantity is (N − 3)2 +N − 9 = N2 − 5N .
Substituting N = 1400, this expression equals 14002 − 5 · 1400 = 1960000− 7000 = 1953000.

I2. When numbering the floors of a new high-rise building, the owner decides that any number
that is a multiple of 3 or a multiple of 5 or both will not be used. Because of this decision, the
first four floors are numbered 1, 2, 4, and 7. Given that the high-rise building has 80 floors,
compute the number that will be assigned to the top floor.

I2-Sol. 149 In the first 15 floors of the high-rise building, the numbers 3, 5, 6, 9, 10, 12, and 15
will not be used. This pattern continues in blocks of 15; only 8 numbers will be used in any block
of 15. Because there are 80 floors, exactly 10 groups of 8 numbers will be used. Thus the top floor
will get the last number in the tenth group, which will be 149.

I3. Consider the following system of equations:

17 = a,

103 = 2a+ 3b,

525 = 4a+ 5b+ 6c,

616 = 7a+ 8b+ 9c+ 10d,

1224 = 11a+ 12b+ 13c+ 14d+ 15e.

This system has exactly one solution. For this solution, compute a+ b+ c+ d+ e.

I3-Sol. 97 The quantity a+ b is found by using the first two equations:

3a+ 3b = a+ (2a+ 3b) = 120 =⇒ a+ b =
120

3
= 40.



This method generalizes to find the partial sums of a+ b+ c+ d+ e in turn.

a+ b+ c =
a+ (a+ b) + (4a+ 5b+ 6c)

6
=

17 + 40 + 525

6
= 97,

a+ b+ c+ d =
17 + 40 + 97 + 616

10
= 77,

a+ b+ c+ d+ e =
17 + 40 + 97 + 77 + 1224

15
= 97.

Note: This implies that (a, b, c, d, e) = (17, 23, 57,−20, 20), which can be manually confirmed to
satisfy the system of equations.

I4. Given △AB1C with AB1 = 4, B1C = 3, and AC = 5. Starting at B1, a path is drawn by first
dropping a perpendicular B1B2 to AC, then dropping a perpendicular B2B3 to AB1, then
dropping a perpendicular B3B4 to AC, and so on ad infinitum, alternately dropping
perpendiculars to AC and AB1.

Compute the total length of the path B1B2B3 . . . .

I4-Sol. 12 Because B1B2 is the altitude of a right triangle, it follows by similar triangles that
B1B2

4 = 3
5 → B1B2 =

12
5 . Note that △AB1B2 ∼ △ACB1 with scale factor 4

5 . Each successive
△ABkBk+1 will be similar to the previous one with the same scale factor, so the lengths of the
segments of the path will form an infinite geometric sequence with a = 12

5 and r = 4
5 . The sum of

the terms of this sequence is 12/5
1−4/5 = 12.

I5. Compute the positive integer n such that (log2 108)
2 + (log2 162)

2 − 1 = (log2 n)
2.

I5-Sol. 972 Let x = log2 3. Then

log2 108 = log2
(
22 · 33

)
= 3 log2 3 + 2 log2 2 = 3x+ 2 and

log2 162 = log2
(
2 · 34

)
= 4 log2 3 + log2 2 = 4x+ 1.



Thus the left-hand side of the given equation is equal to

(3x+ 2)2 + (4x+ 1)2 − 1 = (9x2 + 12x+ 4) + (16x2 + 8x+ 1)− 1 = 25x2 + 20x+ 4 = (5x+ 2)2,

so log2 n = 5x+ 2. This implies

log2 n = 5 log2 3 + 2 = log2
(
22 · 35

)
= log2 972,

so n = 972.

I6. In the NYSMLottery, the winning combination is determined by picking a subset of 6
numbers from the set {1, 2, 3, . . . , N}. Given that there are 28,989,675 possible winning
combinations, compute N .

I6-Sol. 55 Factor 28,989,675 = 25 · 9 · 11 · 13 · 17 · 53. Note in particular that there is no factor of

7 in 28,989,675. Note also that this number is equal to
(
N
6

)
= N(N−1)(N−2)(N−3)(N−4)(N−5)

6! . One
of the factors of the numerator of this fraction is 53, and none of these factors is a multiple of 7.
The only N that allows this to happen is N = 55.

Alternate Solution: Because
(
N
6

)
is a multiple of 25, it follows that

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5) is a multiple of 125. Note that if N ≥ 125, the number of
possible winning combinations is much too large. Thus N and N − 5 must be multiples of 5.
Therefore look for N that are either multiples of 25 or 5 more than a multiple of 25. Because
none of {N,N − 1, N − 2, N − 3, N − 4, N − 5} is a multiple of 7, it follows that N cannot be 25
or 30 or 50, but N could be 55, and that can be shown to be the answer.

I7. In the equation x3 + bx+ c = 0, each of b and c is independently and uniformly randomly
chosen from the interval [−2024, 2024]. Compute the probability that all three solutions of this
cubic equation are negative real numbers.

I7-Sol. 0 By Vieta’s formulas, the sum of the roots is 0. Thus it is impossible for all three
solutions to be negative, and the desired probability is 0.

I8. Compute the least positive integer n > 45 such that n2 − 1 is a multiple of 2024.

I8-Sol. 461 Factor 2024 = 452 − 1 = 44 · 46 = 23 · 11 · 23. In order for 8 to divide n2 − 1, it is
necessary and sufficient to have n be odd. Because 11 | n2 − 1 and 23 | n2 − 1, it follows that
n ≡ ±1 (mod 11) and n ≡ ±1 (mod 23). Consider these four cases in light of the Chinese
Remainder Theorem. If n ≡ 1 (mod 11) and n ≡ 1 (mod 23), then n ≡ 1 (mod 253). If n ≡ −1



(mod 11) and n ≡ −1 (mod 23), then n ≡ −1 ≡ 252 (mod 253). If n ≡ 1 (mod 11) and n ≡ −1
(mod 23), then n ≡ 45 (mod 253). (This can be seen by trial and error or by the fact that n = 45
satisfies 2024 | n2 − 1.) If n ≡ −1 (mod 11) and n ≡ 1 (mod 23), then n ≡ −45 ≡ 208
(mod 253). (This can be seen by trial and error or by the fact that n = −45 is clearly a number
such that 2024 | n2 − 1.) It follows that the following numbers are the least positive integers such
that 253 | n2 − 1:

1, 45, 208, 252, 254, 298, 461, 505, . . . .

The least odd value in the above list greater than 45 is n = 461.

I9. Compute the sum of all positive three-digit multiples of 7 whose digit sum is also 7.

I9-Sol. 1666 Suppose the number is ABC. The problem statement implies 7 | 100A+ 10B + C
and 7 = A+B + C. The first statement implies 7 | 2A+ 3B + C, and because 7 = A+B + C, it
follows that

7 | (2A+ 3B + C)− 2(A+B + C) = B − C.

Because 0 ≤ B,C ≤ 6, it follows that B = C. This means the possible numbers are 700, 511, 322,
and 133, which can all be verified to work, and the sum of these is 1666.

I10. In a square of side length 36, two squares are inscribed, with vertices at the trisection points
of the sides, as shown in the diagram.

Compute the area of the intersection of these two squares, which is shaded in the diagram.

I10-Sol. 600 Consider the square in the coordinate plane and let its vertices be (0, 0), (36, 0),
(36, 36), and (0, 36). The lines have equations y = −2x+ 24, y = −1

2x+ 12, y = 1
2x+ 24,

y = 2x+ 12, and so on. The vertices of the octagon are
{(8, 8), (3, 16), (8, 24), (18, 33), (28, 28), (33, 16), (28, 8), (18, 3)}. The area of the octagon is the area
of one of the inner squares minus the areas of 4 small congruent right triangles:(
12
√
5
)2 − 4

(
1
2

)
· 3
√
5 · 4

√
5 = 600.



2024 Championships The word “compute” calls for an exact answer in simplest form.

R1-1. Compute the least positive integer greater than 2024 whose digit sum is a power of 2, and
each of whose digits is a power of 2.

R1-2. Let N be the number you will receive. Given that the parabola with equation
y = x2 +Ax+B passes through (−1,K), (0, 2024), and (1, N), compute K.

R1-3. Let N be the number you will receive. Suppose ABCD is a square with area N . Let the
midpoints of CD and DA be M and K, respectively, and let BM and CK intersect at P .
Compute AP .

R2-1. Complex numbers x and y satisfy the system of equations{
x+ 3y = 8,

xy = 10.

Compute x2 + 9y2.

R2-2. Let N be the number you will receive. Compute

N3 + 4 · (N2 · 3) + 4 · (N · 32) + 33

N + 3
.

R2-3. Let N be the number you will receive. Compute√
N2 − 362 − 482

372 − 212 − 282
.
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.
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2024 Championships The word “compute” calls for an exact answer in simplest form.

R1-1. Compute the least positive integer greater than 2024 whose digit sum is a power of 2, and
each of whose digits is a power of 2.

R1-1-Sol. 2114 Because each digit is a power of 2, each digit is positive. Thus the sum of the
digits is at least 2 + 1 + 1 + 1 = 5. The next greatest power of 2 is 8, so try to make the digit sum
equal to 8. To minimize the second and third digits, notice that 2114 satisfies the conditions of
the problem.

R1-2. Let N be the number you will receive. Given that the parabola with equation
y = x2 +Ax+B passes through (−1,K), (0, 2024), and (1, N), compute K.

R1-2-Sol. 1936 Because the parabola passes through (0, 2024), it follows that B = 2024.
Substitute x = 1 to obtain

N = 2025 +A =⇒ A = N − 2025.

Now substitute x = −1 to obtain that

K = 2025−A = 4050−N.

With N = 2114, the answer is K = 1936.
Alternatively, with N = 2114, note that 2024 = 452 − 1 and 2114 = 462 − 2, so the polynomial is
(x+ 45)2 − (x+ 1), giving K = 442 = 1936.

R1-3. Let N be the number you will receive. Suppose ABCD is a square with area N . Let the
midpoints of CD and DA be M and K, respectively, and let BM and CK intersect at P .
Compute AP .

R1-3-Sol. 44 This problem can be solved relatively cleanly with coordinates. The following
solution, by contrast, is more geometric and is presented for your consideration.



A B

CD M

K

P

Note that BM and CK are perpendicular to each other because
m∠PCB = 90◦ −m∠DCK = 90◦ −m∠CBM , so m∠BPK = 90◦. Notice also that
m∠BAK = 90◦, so quadrialteral BAKP is cyclic.

Because K is the midpoint of AD, it follows that m∠CKD = m∠BKA, so KA bisects the
supplement of ∠PKB. This implies that AP = AB. Because the area of the square is N , this
means AP = AB =

√
N . With N = 1936, the answer is AP = 44.



R2-1. Complex numbers x and y satisfy the system of equations{
x+ 3y = 8,

xy = 10.

Compute x2 + 9y2.

R2-1-Sol. 4 Square the first equation to obtain (x+ 3y)2 = x2 + 6xy + 9y2 = 64. Subtract

6xy = 60 from both sides to obtain x2 + 9y2 = 4 .

R2-2. Let N be the number you will receive. Compute

N3 + 4 · (N2 · 3) + 4 · (N · 32) + 33

N + 3
.

R2-2-Sol. 61 The numerator can be split into

N3 + 4 · (N2 · 3) + 4 · (N · 32) + 33 = [N3 + 3 · (N2 · 3) + 3 · (N · 32) + 33] +N2 · 3 +N · 32

= (N + 3)3 + 3N(N + 3).

Therefore the given fraction simplifies to

N3 + 4 · (N2 · 3) + 4 · (N · 32) + 33

N + 3
=

(N + 3)3 + 3N(N + 3)

N + 3
= (N + 3)2 + 3N.

Substituting N = 4, the answer is 72 + 12 = 61.

R2-3. Let N be the number you will receive. Compute√
N2 − 362 − 482

372 − 212 − 282
.

R2-3-Sol. 11
12 The two lesser squares in the numerator and denominator combine via the 3-4-5

Pythagorean triple:

362 + 482 = (3 · 12)2 + (4 · 12)2 = (5 · 12)2 = 602,

212 + 282 = (3 · 7)2 + (4 · 7)2 = (5 · 7)2 = 352.

The expression in the problem is equivalent to√
N2 − 362 − 482

372 − 212 − 282
=

√
N2 − 602

372 − 352
=

√
N2 − 602

(37− 35)(37 + 35)
=

√
N2 − 602

2 · 72
=

√
N2 − 602

144
.

Given N = 61, the numerator of the remaining fraction simplifies to

612 − 602 = (61− 60)(61 + 60) = 121. Therefore the given expression equals
√

121
144 = 11

12 .



TIEBREAKER 1

A parabola y = f (x) intersects the lines y = x and y = x + 4, each

exactly twice. Two of these intersection points are (0, 0), and

(20, 24). Compute the area of the smallest possible trapezoid that

has these four intersection points as vertices.



TIEBREAKER 1

A parabola y = f (x) intersects the lines y = x and y = x + 4, each

exactly twice. Two of these intersection points are (0, 0), and

(20, 24). Compute the area of the smallest possible trapezoid that

has these four intersection points as vertices.

80 Denote the parabola by y = f (x), and let the other intersection

with the line y = x be (a, a). Then the quadratic polynomial

f (x)− x has roots x = 0 and x = a, so express f (x) as

f (x) = cx(x− a) + x

for some nonzero real constant c. This parabola passes through the

point (20, 24), so substitute x = 20 into this equation to obtain

24 = 20c(20− a) + 20 =⇒ c =
1

5(20− a)
.

Therefore this quadratic equation can be expressed as

f (x) =
1

5(20− a)
x(x− a) + x.

Find the other intersection with y = x + 4 in terms of a. At this

intersection point (x, y), x satisfies f (x) = x + 4, so
x + 4 = 1

5(20−a)x(x− a) + x

=⇒ 20(20− a) = x(x− a)

=⇒ x2 − ax− 20(20− a) = 0

=⇒ (x− 20)(x− a + 20) = 0.
The other intersection between the parabola and y = x+ 4 is at the

point (a− 20, a− 16). Therefore the problem can be solved by

minimizing the area of a trapezoid with coordinates (0, 0), (a, a),

(20, 24), and (a− 20, a− 16).

The distance between the lines y = x and y = x + 4 is 2
√
2, so this

trapezoid will have constant height as the parabola varies. The



distance formula shows that the length of its lower base is√
a2 + a2 = |a|

√
2, and the length of its upper base is√

(a− 20− 20)2 + (a− 16− 24)2 = |a− 40|
√
2. Therefore the

area of this trapezoid is

|a|
√
2 + |a− 40|

√
2

2
· 2
√
2 = 2(|a| + |a− 40|).

This is minimized when a is any value between 0 and 40, and the

minimum value is

2(a + 40− a) = 80.



TIEBREAKER 2

Compute the greatest prime factor of 20! + 24!.



TIEBREAKER 2

Compute the greatest prime factor of 20! + 24!.

101 Notice that 20! + 24! = 20!(1 + 24 · 23 · 22 · 21). Let x = 22.

Then the given expression is equal to

1 + (x + 2)(x + 1)(x)(x− 1) = 1 + (x2 + 2x)(x2 − 1), which equals

x4 + 2x3 − x2 − 2x + 1 = (x2 + x− 1)2. Substituting x = 22, this

has the value (484 + 22− 1)2 = 5052 = 52 · 1012, so the greatest

prime factor of 20! + 24! is 101.



TIEBREAKER 3

Steve writes all 24 permutations of the digits in 1973. Compute the

sum of these 24 permutations.



TIEBREAKER 3

Steve writes all 24 permutations of the digits in 1973. Compute the

sum of these 24 permutations.

133320 There will be 6 of each digit in each place (ones, tens,

hundreds, and thousands). Thus the sum of the digits in the ones

place is 6(1 + 9 + 7 + 3) = 120. The sum of all permutations is

120(1000 + 100 + 10 + 1) = 120(1111) = 133320.


